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Universality and w4 theory of finite-size effects above the upper critical dimension
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We analyze finite-size effects in aLd geometry above the upper critical dimensiond54 within theO(n)
symmetricw4 theory on the basis of exact results forn→` and one-loop results forn51. We show that
finite-size effects of thew4 continuum theory with a smooth~rather than sharp! cutoff belong to the same
universality class as those of thew4 lattice theory. Our analysis predicts both universal and nonuniversal
features of finite-size effects and resolves long-standing discrepancies in earlier analyses of Monte Carlo~MC!
data for thed55 Ising model. Our estimates of two fundamental length scalesj0 andl 0 are confirmed by very
recent MC data.
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The concept of universality plays a fundamental role
statistical and elementary particle physics@1,2#. It implies
that a unifying description of various physically differe
lattice and continuum systems near criticality can be giv
within the w4 field theory with the Hamiltonian

H5E ddxF r 0

2
w21

1

2
~¹ w!21u0~w2!2G . ~1!

The wide applicability of this theory is well establishe
below the upper critical dimensiond* 54 @1,2#. Particular
accuracy has been achieved in testing the universal pre
tions of thew4 theory by means of numerical data for th
universality class of thed53 Ising model not only for bulk
properties but also for finite-size effects with periodic boun
ary conditions~pbc! @3–5#.

Less well established, however, is the range of applica
ity of the w4 theory for confined systemsabovethe upper
critical dimension where the critical exponents are me
field-like @1,2#. Early disagreements between Monte Ca
~MC! data for the finited55 Ising model@6# and universal
predictions based onH @4# have led to a long-standing deba
@7#. New discrepancies between accurate MC data@8# and
recent quantitative finite-size scaling predictions@9# based on
the w4 lattice Hamiltonian

Ĥ5(
i

F r 0

2
w i

21u0~w i
2!2G1(̂

i j &

J

2
~w i2w j !

2 ~2!

have raised the question of to what extent thew4 theory is
capable of describing finite-size effects of the Ising mo
for d.4. In particular, the recently discovered@9,10# non-
equivalence ofH andĤ for finite systems is in striking con
trast to the situation ford,4. This nonequivalence may b
relevant not only for higher-dimensional finite systems, b
also for three-dimensional physical systems for which me
field theory provides a good description, such as syste
with long but finite range interactions@11#, polymer mixtures
near their critical point of unmixing@12#, and systems with a
tricritical point @13#.

In this paper we resolve the existing discrepancies fod
.4 on the basis of exact results for theO(n) symmetricw4
1063-651X/2000/63~1!/016113~5!/$15.00 63 0161
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theory in the limitn→` and of one-loop results forn51.
Our analysis of bothĤ and H with a smooth and a shar
cutoff allows us to specify the range of validity of univers
finite-size scaling for pbc in aLd geometry. We find, for pbc,
thatH with a smooth cutoff belongs to the same universa
class asĤ, whereasH with a sharp cutoff exhibits differen
finite-size effects. This implies that the lowest-mode pred
tion @4# of universal ratios atTc for d.4 is indeed valid
asymptotically for both the latticew4 theory and the con-
tinuum w4 theory with a smooth cutoff but not with a shar
cutoff. We also demonstrate that our one-loop results ba
on Ĥ are in quantitative agreement with the MC data@8# for
the d55 Ising model with 4<L<22 and that the universa
two-variable scaling results@9,14# are well applicable toL
*12, contrary to earlier conclusions@8,15#. Significant lat-
tice effects are identified forL,12 which imply weak
maxima of theL dependence of the scaled susceptibility a
magnetization atTc . The new strategy of our finite-siz
analysis also succeeds in determining thetwo fundamental
length scalesj0 and l 0 of the d.4 theory. Very recent MC
data@16# confirm the validity of our strategy.

We start fromĤ, Eq. ~2!, for the n-component variables
w i on a sc lattice of volumeLd with a nearest-neighbor cou
pling J.0. The basic question is to what extentĤ is equiva-
lent to the spin HamiltonianHs52K(^ i j &sisj where the
n-component spin variables have a fixed lengthsi

25n, in
contrast tow i , whose componentsw ia vary in the range
2`<w ia<`. For n51, Hs is the Ising Hamiltonian with
si56 1 andK.0.

An exact equivalence betweenĤ and Hs exists in the
limit u0→`, r 0→2` at fixed u0 /(Jr0) for generalL, n,
and d. Choosingu0 /(Jr0) such thatK52Jr0 /(4u0n) we
obtain by means of a saddle-point integration

lim
u0→`

2r 0→`

x5
K

J
xs , ~3!

wherex andxs are the susceptibilities
©2000 The American Physical Society13-1
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x5~nLd!21(
i , j

^w iw j&, ~4!

xs5~nLd!21(
i , j

^sisj&. ~5!

The weights in Eqs.~4! and ~5! are e2Ĥ and e2Hs, respec-
tively. For n51, this exact equivalence is of limited re
evance, since all calculations within thew4 model are per-
formed atfinite u0. Hence, even in an exact theory, we ha
xsÞJx/K at finite u0. Therefore, in a comparison ofx with
MC data for xs , one must allow for a (T- and
L-independent! overall amplitudeA which is adjusted such
thatxs5AJx/K. For finiteu0, the constantA accounts for an
appropriate normalization of the variablesw i relative to the
discrete variablessi561. In an approximate theory, th
value ofA depends on the approximations made forx. This
corresponds to an adjustment merely of thenonuniversal
bulk amplitude and not of theL dependence ofx ~for d53
see, e.g., Ref.@5#!. An adjustment ofA was not taken into
account in the analysis of Ref.@8#.

Of particular interest is the casen→`, since it provides
the opportunity to study theexact u0 dependence including
u0→`. This reveals the structural similarity betweenx at
finite u0 and atu05`. This is most informative ford.4
where the leading and subleading powers ofL are indepen-
dent ofn and should apply also to the Ising universality cla
with n51.

For n→` at fixedu0n the susceptibilityx̂52Jx for pbc
is determined implicitly by@10#

x̂215r 0 /~2J!1J22u0nL2d(
k

Gk~ x̂21!, ~6!

with Gk(x̂
21)5(x̂211Jk)

21 and Jk52( j 51
d (12coskj)

where (k runs over k vectors with componentskj
52pmj /L, mj50,61,62 . . . , j 51,2,. . . ,d in the range
2p<kj,p. At T5Tc we derive from Eq.~6! the exact
implicit equation ford.4,

x̂25Ld
l0~u0!2x̂ (42d)/2f b~ x̂21!

12Ldx̂21D̂1~ x̂21,L !
, ~7!

with l0(u0)5(J21u0n*kJk
22)(u0n)21 and

f b~ x̂21!5x̂ (d26)/2E
k
@Jk

2~ x̂211Jk!#21, ~8!

D̂m~ x̂21,L !5E
k
Gk~ x̂21!m2L2d(

kÞ0
Gk~ x̂21!m, ~9!

where*k[(2p)2d*ddk with ukj u<p. We see that the struc
ture of theL dependence ofx̂ for finite u0.0 is the same as
for u0→`, where l0(u0) is reduced tol05*kJk

22 . It is

reasonable to expect that also forn51 the calculation ofx̂ at
finite u0 yields essentially the correct structure ofxs .
01611
s In Fig. 1~a! we show the exact result ofx̂L25/2 for n
→` and d55 at Tc by solving Eq. ~7! numerically with
l05*kJk

2250.019 35. We find thatx̂L25/2 has a weak maxi-
mum atL59 which is not contained in the universal scalin
form x̂scal5Ld/2P(L42d/l0) of Ref. @10# ~dashed curve!. In
x̂scal the nonasymptotic Wegner correction} f b was ne-
glected andD̂1 was approximated only by the leading ter
D̂15I 1(x̂21L2)L22d with

I m~x!5E
0

`

dt
tm21@Kb~ t !d2K~ t !d11#

~2p!2me(xt/4p2)
, ~10!

whereKb(t)5(p/t)1/2 andK(t)5( j 52`
` exp(2j2t). Both x̂

and x̂scal show the predicted@9# slow O(L (42d)/2) approach
to the large-L limit x̂0L2d/25l0

1/2 corresponding to the
lowest-mode approximation@horizontal line in Fig. 1~a!#.
Note thatx̂0 is approached fromabove.

The small difference betweenx̂ and x̂scal in Fig. 1~a! for
L*15 arises from the negative Wegner correction te
}2L (42d)d/4f b(0) in Eq. ~7!. The pronounced departure o
x̂ from x̂scal for L&10, however, is a lattice effect that i
dominated by the second term in

D̂1~ x̂21,L !5I 1~x!L22d2M̂1~x!L2d1O~L2d22!,
~11!

M̂1~x!5E
0

`

dt
@K~ t !d21K9~ t !2Kb~ t !d21Kb9~ t !#

e(xt/4p2)
, ~12!

FIG. 1. Scaled susceptibilities ford55 atTc . Solid and dashed
lines approach the lowest-mode lines forL→`.
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with x5x̂21L2. Unlike the universal termI 1L22d, the lattice
term 2M̂1L2d cannot be incorporated into the univers
finite-size scaling functionP(y), which depends ony
5(L/ l 0)42d with l 0

42d5l0. In summary, the leadingL de-

pendence ofx̂ is represented as

x̂5S l0Ld
12q2L (42d)d/4

12q1L (42d)/21q3L2d/2D 1/2

, ~13!

where q15l0
21/2I 1(x), q25l0

2d/4f b(0), and q3

5l0
21/2M̂1(x). The functionsI 1(x) andM̂1(x) have a weak

x dependence withI 1(0)50.107 andM̂1(0)50.676 for d
55. Equation~13! is shown in Fig. 1~a! as a dot-dashed line
which approximates the exact result, Eq.~7!, with very good
accuracy down toL53.

Now we turn to the question of to what extentH, Eq. ~1!,
is equivalent toĤ. From our result ofx̂, Eqs. ~6!–~9!,
we obtain the corresponding result ofx f ield
5n21*ddx^w(x)w(0)& after replacingJk by k2 and setting
2J51. A novel feature ford.4 is the fact thatD1 depends
significantly on the cutoff procedure. We need to distingu
two cases:~a! a sharpcutoff L which restricts thek vector to
ukj u<L, and ~b! a smoothcutoff L where2`<kj<` but
where (x̂211k2)2m is replaced by the~Schwinger type!
regularized form@2#

~ x̂211k2!reg
2m5E

L22

`

ds sm21 exp@2~ x̂211k2!s#.

Case~a! implies @9,10# D1}L22 and x f ield}Ld22 at Tc ,
which differs fundamentally from the lattice resultD̂1

}L22d andx̂}Ld/2. In case~b!, however, Eqs.~11! and~12!
are replaced by

D1~ x̂21,L !5I 1~x!L22d2M1~ x̂21!L2d1O~e2L2L2
!,
~14!

M1~ x̂21!5x̂@12exp~2x̂21L22!#, ~15!

with the same universal termI 1L22d. This implies thatx f ield
with a smooth cutoff has the same finite-size scaling beh
ior as x̂scal . Adjustment of the leading amplitudel0

f ield

5*k(k
22) reg

22 to the lattice counterpartl05*kJk
22 fixes the

cutoff as L50.185 and M1(0)5L2250.034 for d55,
which is smaller thanM̂1(0) by a factor of 20. This differ-
ence betweenM̂1 and M1 constitutes a significant lattic
effect for small L that is exhibited in Fig. 1~a!, with
x f ieldL25/2 represented by the dotted line. We conclude t
H with a smoothcutoff yields the same universal finite-siz
scaling behavior asĤ ~for cubic geometry and pbc! but does
not account for the strongL dependence ofx̂L2d/2 for small
L. We expect this conclusion to hold for generaln.

Now we considerĤ for the relevant casen51. We start
from the one-loop result forx̂52Jx and for the ratioQ
01611
l

h

v-

t

5^F2&2/^F4& of momentŝ Fm& for the order parameter dis
tribution whereF5L2dS jw j . The analytic result reads fo
arbitraryL @9#

x̂5Ld/2~u0
e f f!21/2q2~Ye f f!, ~16!

Q5q2~Ye f f!2/q4~Ye f f!, ~17!

Ye f f5Ld/2r 0
e f f~u0

e f f!21/2, ~18!

qm~Y!5

E
0

`

ds sm expS 2
1

2
Ys22s4D

E
0

`

dsexpS 2
1

2
Ys22s4D , ~19!

with the effective parameters

r 0
e f f5ã0t112ũ0~S12l0!1144ũ0

2M0
2S2 , ~20!

u0
e f f5ũ0236ũ0

2S2 , ~21!

Sm5L2d(
kÞ0

~ ã0t112ũ0M0
21Jk!2m, ~22!

M0
25~Ldũ0!21/2q2~Ld/2ã0tũ0

21/2!. ~23!

The right-hand side of Eqs.~16!–~23! depend only on the
parametersũ05u0 /(4J2) and ã05a0 /(2J), wherea05(r 0
2r 0c)/t with t5(T2Tc)/Tc . Equations ~16!–~23! were
evaluated previously@9# only for largeL. Here we present
the numerical evaluation of Eqs.~16!–~23! for arbitrary L
<32 without further approximationfor d55 including Weg-
ner corrections and lattice terms. Our strategy of adjustingũ0

is based on the fact thatQ at T5Tc depends only onũ0 and
that no overall adjustment forQ is required, since
lim

L→`
Q5Q0 is universal. Thus we adjustũ050.93 to the

MC data@8# of Q at Tc ~Fig. 2!, then we use the sameũ0 for
x̂ at Tc . For a comparison ofx̂ with the MC data forxs at
Tc , we introduce the amplitudeA according toxs5AJx/K
5Ax̂/(2Kc). Using @8# Kc50.113 915 5 and adjustingA
50.678 yields the solid line in Fig. 1~b!. At TÞTc we de-

FIG. 2. Moment ratioQ at Tc for d55 and n51. Solid and
dashed lines approach the lowest-mode line forL→`.
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termineã052.87 from thebulk susceptibilityxs51.322t21

of series expansion results@17#.
In Figs. 1~b!–3 our analytic results~solid lines! are com-

pared with the MC data of Ref.@8#. We conclude that our
theory based onĤ satisfactorily describes the existing M
data for 4<L<22, both atTc and away fromTc ~Fig. 3!,
including lattice effects for smallL. We attribute the remain
ing deviations ofQ for small L to the inaccuracy of our
one-loop approximation. AtTc our results approach th
lowest-mode results lim

L→`
xsL

25/25p051.757 and Q0

50.4569@horizontal lines in Figs. 1~b! and 2# from above.
Thus we predict a nonmonotonicL dependence ofxsL

25/2,
of Q ~Fig. 2! and of the scaled magnetization^uFu&L5/4 at
Tc .

The important question that remains to be answered
whether or not the MC data in Figs. 1~b!–3 can be described
by the universal finite-size scaling forms ofx̂scal52Jxscal
andQscal derived previously@Eqs.~76!–~88! of Ref. @9## on
the basis ofĤ. These scaling forms neglect Wegner corre
tions and lattice effects. We have found that the same sca
functions can be derived on the basis ofH provided that a
smooth cutoff is used. A crucial issue is to identify the fu
damental reference lengthsj0 andl 0 of the two scaling vari-
ablesx5t(L/j0)2 and y5(L/ l 0)42d wherej0}ã0

21/2 is the
amplitude of the bulk correlation length aboveTc and

FIG. 3. Temperature dependence of susceptibilities ford55 and
n51: 1022xs for L54 and 1023xs for L512.
a

a
,

ys

01611
is

-
ng

-

l 0}ũ0
1/(d24) @10#. Since the one-loop results forx̂ and x̂scal

differ at O(ũ0
2), one must allow for a different ampli

tude AscalÞA in the adjustment of x̂scal to xs

5Ascalx̂scal /(2Kc). Using the same strategy of adjustme
as described above, we findAscal51.925 and

l 052.641, j050.396. ~24!

The corresponding scaling results are shown in Figs. 1~b!–3
as dashed lines. They disagree with the MC data forsmall L,
as noted already by Luijtenet al. @8#. As a significant
achievement of our present analysis, we now see, howe
that there is satisfactory agreement between our unive
scaling results and the MC data forL*12, contrary to the
disagreement found in Ref.@8#. The latter disagreement i
due to the~unjustified! identification@8# J5K,xs5x corre-
sponding toAscal51 which, together with the fitting formula
Eq. ~32! of Ref. @8#, implied l 050.603 andj050.549. This
formula omits the leading Wegner correction}L (42d)d/4 and
a negative lattice term}L2d/2 @compare our Eq.~13!# and
therefore implies anincreasingxsL

25/2 ~Fig. 9 of Ref.@8#!
towards @15# lim

L→`
xsL

25/25p051.87, in contrast to the

decreasingxsL
25/2 with p051.76 of our one-loop theory

@Fig. 1~b!#. We emphasize that this decrease is auniversal
feature of the scaling functionP(y). The validity of our
strategy can be tested by calculating the amplitudesAM and
BM of the bulk magnetizationMb5AM(2t)1/2 at zero exter-
nal field h50 belowTc and Mb5BMh1/3 at Tc for small h
.0 as functions ofj0 and l 0 within the w4 theory atd55.
Substituting our parameter values, Eq.~24!, we find in one-
loop orderAM52.26 andBM51.89. Very recent MC simu-
lations @16# for the d55 Ising model confirm these predic
tions ~and exclude those implied by the parameter values
Ref. @8#!, thus supporting the correctness of the strategy
our finite-size analysis.
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