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Universality and ¢* theory of finite-size effects above the upper critical dimension
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We analyze finite-size effects inl#! geometry above the upper critical dimensids 4 within the O(n)
symmetrico* theory on the basis of exact results for« and one-loop results fan=1. We show that
finite-size effects of thep* continuum theory with a smoottrather than shajpcutoff belong to the same
universality class as those of the lattice theory. Our analysis predicts both universal and nonuniversal
features of finite-size effects and resolves long-standing discrepancies in earlier analyses of Moritd©arlo
data for thed=5 Ising model. Our estimates of two fundamental length sc@jesdl, are confirmed by very
recent MC data.
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The concept of universality plays a fundamental role intheory in the limitn—c and of one-loop results fan=1.
that a unifying description of various physically different cytoff allows us to specify the range of validity of universal
lattice and continuum systems near criticality can be giveRinjte-size scaling for pbc in B geometry. We find, for pbc,
" 1 class adH, whereasH with a sharp cutoff exhibits different
H:f ddx Eo(pz"' 5V @)%+ ug(¢?)?|. (1) finite-size effects. This implies that the lowest-mode predic-
. N . . . asymptotically for both the lattice* theory and the con-
The wide applicability of this theory is well established tinﬁurpr)] o theyory with a smooth cutoff butynot with a sharp
accuracy has been achieved in testing the universal predic- -~ ) L .
tions of the* theory by means of numerical data for the 9" H are in quantitative agreement with the MC degafor
properties but also for finite-size effects with periodic bound_two-variable scaling result,14] are well applicable td.
Less well established, however, is the range of applicabiltice effects are identified fol <12 which imply weak
ity of the ¢* theory for confined systemabovethe upper maxima of theL dependence of the scaled susceptibility and
field-like [1,2]. Early disagreements between Monte Carlo@n@lysis also succeeds in determining the fundamental
(MC) data for the finited=5 Ising model[6] and universal length scaleg, andl, of thed>4 theory. Very recent MC

statistical and elementary particle physids2]. It implies  our analysis of botfd and H with a smooth and a sharp

within the ¢* field theory with the Hamiltonian thatH with a smooth cutoff belongs to the same universality
tion [4] of universal ratios aff, for d>4 is indeed valid

" : o .

below the upper critical dimensiod" =4 [1,2]. Particular cutoff. We also demonstrate that our one-loop results based

universality class of thel=3 Ising model not only for bulk the d=5 Ising model with 4<L <22 and that the universal

ary conditions(pbd) [3-5]. =12, contrary to earlier conclusion8,15]. Significant lat-

critical dimension where the critical exponents are meanMagnetization aff;. The new strategy of our finite-size

predictions based o [4] have led to a long-standing debate data[16] confirm the validity of our strategy.

[7]. New discrepancies between accurate MC d&faand We start ff(?m':', Eq. (2), EOT the n-component variables
recent quantitative finite-size scaling predicti¢Bbased on  ¢; 0n a sc lattice of volumé® with a nearest-neighbor cou-
the ¢* lattice Hamiltonian pling J>0. The basic question is to what extéhis equiva-

lent to the spin HamiltoniarHs=—KZj;ys;s; where the
n-component spin variables have a fixed Iengfl‘-F n, in
contrast tog;, whose components,;, vary in the range
—wo=<g;,<». Forn=1, Hy is the Ising Hamiltonian with
have raised the question of to what extent gfetheory is  s;==* 1 andK>0.

capable of describing finite-size effects of the Ising model An exact equivalence betwedt and H, exists in the
for d>4. In particular, the recently discover¢d,10] non-  |imit uy—o, ro— — at fixed ug/(Jry) for generall, n,
equivalence oH andH for finite systems is in striking con- andd. Choosingug/(Jrg) such thatK=—Jry/(4ugn) we
trast to the situation fod<4. This nonequivalence may be obtain by means of a saddle-point integration

relevant not only for higher-dimensional finite systems, but

also for three-dimensional physical systems for which mean-

J
2 5(ei—e)® (@
(i

A=

o
> @ +uo(¢))?

field theory provides a good description, such as systems lim _5 3)
with long but finite range interactiofid 1], polymer mixtures oo X~ 3 Xs
near their critical point of unmixing12], and systems with a _foﬂoc

tricritical point [13].
In this paper we resolve the existing discrepanciesdfor
>4 on the basis of exact results for t@n) symmetrice*  wherey and y, are the susceptibilities
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—(ndy-1
x=(nL% IZ] (@io)), (4) el e n=oco @ 1
N 044 |- .
Xs= (nLd)_lE (si Si>' ©) ‘?_| o——o exact lattice theory, Eq.(7)
" o012 4 ---- universal scaling function ]
" Al ,/ —-— with Wegner and lattice term, Eq. (13)
The weights in Eqgs(4) and (5) aree ™ ande™"s, respec- od L ! — lowest-mode approximation |
tively. For n=1, this exact equivalence is of limited rel- | - continuum theory with smaoth cutoff
evance, since all calculations within tlg¢ model are per- 0.08 : L L ) .
formed atfinite u,. Hence, even in an exact theory, we have 0 4 8 L12 16 20
xs#Jx/K at finiteuy. Therefore, in a comparison qf with 01 ‘ . . . .
MC data for ys, one must allow for a T- and ' .
L-independentoverall amplitudeA which is adjusted such e n=1 (b)
that ys=AJy/K. For finiteu,, the constanA accounts for an 197 e ogmoo-oo oo y

appropriate normalization of the variables relative to the

o
discrete variables;==*1. In an approximate theory, the ".’_I 1.7 1 /rv « MC, Ref. [3] 1
value of A depends on the approximations made ¥orThis o3 lattice théory, Eq. (16)

corresponds to an adjustment merely of th@nuniversal 15 " ---- universal scaling function

bulk amplitude and not of thé dependence of (for d=3 —— lowest-mode approximation

see, e.g., Refl5]). An adjustment ofA was not taken into 13 ‘ , , ‘ ‘ , ,

account in the analysis of R€8]. T 4 8 12 16 20 24 28 32
Of particular interest is the case—«, since it provides L

the opportunity to study thexact  dependence including
ug—oe. This reveals the structural similarity betwegnat
finite ug and atug=cc. This is most informative fod>4
where the leading and subleading powerd aire indepen-
dent ofn and should apply also to the Ising universality class

FIG. 1. Scaled susceptibilities far=5 atT.. Solid and dashed
lines approach the lowest-mode lines for .

In Fig. 1@ we show the exact result ofL ~>2 for n

with n=1 —o andd=5 at T, by solving Eq.(7) numerically with
: R [ o1-2_ . 2| —5/2 i
Forn—oo at fixedugn the susceptibilityy=2Jy for pbc No=Jidi _0'01_9 35' We find thatL . has qweak maxi-
is determined implicitly by[10] mum atL =9 which is not contained in the universal scaling
form ysca=L¥2P(L*9/\,) of Ref.[10] (dashed curve In
v l=r0/(23)+ 3 2unl 0 Gk Y, ()  Ascal the ncA)nasymptotlc Wegner correctionf, Wa§ ne-
K glected andA; was approximated only by the leading term

) ) ) A=1,(x"1LALZ 9 with
with Ge(x H=(x""+3) " and J=23f_,(1—cosk)
where X, runs over k vectors with componentsk; W gm-1 ' d
—2mm/L, m=0=1+2..., j=12,..d in the range |m(x):f g Lo KO
—m<kj<m. At T=T. we derive from Eq.(6) the exact (27)°mexv4m)
implicit equation ford>4,

. - whereKp(t) = (m/t)¥2 andK(t)=37_ __ exp(~j?). Both y
No(Uo) — X~ V*(x ™Y - . O] (-2
F2=Ldn00 o b , (7)  andxsca show the predicte®] slow O(L*~%"?) approach

1-L% *A(x L) to the largek limit yoL %?=\? corresponding to the
lowest-mode approximatiophorizontal line in Fig. 1a)].
Note thaty, is approached frorabove

A A A The small difference betweepand ys., in Fig. (@) for
fb(Xfl)ZX(d%)/zf [Je(x t+3017%, (8) L=15 arises from the negative Wegner correction term
k o — L4~ D45 () in Eq. (7). The pronounced departure of
x from ysca for L<10, however, is a lattice effect that is
An(x LL)= kak()}*l)m— L*dgo G(x™H™ (90 dominated by the second term in

with X o(Ug) = (3%+ uonfJy 2 (uon) ~* and

where[ = (2) "9 d% with |k;|<7. We see that the struc- Ar(x HL) =1 00L2 =My ()L "+ O(L797),
ture of theL dependence of for finite u,>0 is the same as

for uy—oe, where \o(Uo) is reduced tony=[J, 2. It is 1 d1n
reasonable to expect that also for 1 the calculation of at M (X) = fwdt[K(t) K'®~ Ks(t) Ks(V)] ,
finite u, yields essentially the correct structure xf. 0 e(xv4m)

11

(12
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with x= y “1L2. Unlike the universal term;, L2~ the lattice

term —M;L~¢ cannot be incorporated into the universal
finite-size scaling functionP(y), which depends ony
=(L/1g)*"9 with 137%=\,. In summary, the leading de-
pendence of is represented as

172

. g 1_q2L(4—d)d/4
x=| Aol 1_q1|_(4—d)/2+q3|_—d/2 ' (13
where  qi=XgM3(x),  d=Ng"*y(0), and g

=Xo Y2M(x). The functiond ;(x) andM(x) have a weak

x dependence with,(0)=0.107 andM 1(0)=0.676 ford
=5. Equation(13) is shown in Fig. 1a) as a dot-dashed line
which approximates the exact result, Ed), with very good
accuracy down td.=3.

Now we turn to the question of to what extéf Eq. (1),
is equivalent toH. From our result ofy, Egs. (6)—(9),
we obtain the corresponding result  of xfielq
=n"11d%(¢(x)¢(0)) after replacingl, by k? and setting
2J=1. A novel feature fod>4 is the fact that\, depends

significantly on the cutoff procedure. We need to distinguish

two cases(a) a sharpcutoff A which restricts thé vector to
|kj|<A, and(b) a smoothcutoff A where —s<k;j< but

where (y~*+k? ™™ is replaced by theSchwinger typg
regularized forn{2]

(x 1+k3), 0= fx Ldss™ texd —(x t+k3)s].
.

Case(a) implies [9,10] A;xL "2 and ysieig<L% 2 at T,
which differs fundamentally from the lattice resu,lAX1
xL279 andy=L%2 In case(b), however, Eqs(11) and(12)
are replaced by

22

A(x L0 =1,0LZ 9= My(x HL 9+ 0(e L),

(14)
Mi(x H=x[1—exp(—x *A"?)], (15)

with the same universal terigL.?~ 9. This implies thatyjeq
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0.43 - ---- universal scaling function 1
lowest- mode appro><|mat|on Ref. [4]
0.41 ! !
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FIG. 2. Moment ratioQ at T, for d=5 andn=1. Solid and
dashed lines approach the lowest-mode linelfesx.

=(d?)?/(d* of moments(d™) for the order parameter dis-
tribution where® = L’dqu;j . The analytic result reads for
arbitraryL [9]

;(: Ld/2(u8ff)71/2192(Yeff), (16)
Q= 9,(Ye')2/§,(Ye™), (17
Yeff: Ld/ngff(ugff)—ZL/Z’ (18)
- 1
J ds é“ex;{ - EYS2—S4)
0
In(Y)=—— 1 , (19
f dsex;{ — —Ysz—s“)
0 2
with the effective parameters
reff=agt+120,(S;— \o) + 14403M3S,, (20)
us’=1,—3603S,, (22)
Sn=L"92 (agt+12Mg+J) "™, (22)
k#0
M3 = (L o) ~M295(L Y actly 2. (23

The right-hand side of Eq£l6) (23) depend only on the

with a smooth cutoff has the same finite-size scaling behavparametersio=uy/(4J%) anday=ay/(2J), whereay=(r,

ior as ysca- Adjustment of the leading amplltudlef"*'d

= [ (k™ 2)regj to the lattice counterpatt,= [, J, 2 fixes the
cutoff as A=0.185 andM(0)=A"2=0.034 for d=5,

which is smaller tharM ;(0) by a factor of 20. This differ-

ence betweerf/ll and M, constitutes a significant lattice
effect for small L that is exhibited in Fig. (), with

XfleIdL
H with a smoothcutoff yields the same universal finite-size

scaling behavior asl (for cubic geometry and pbdut does

not account for the strong dependence ofL ~%? for small
L. We expect this conclusion to hold for genenal

Now we consideir for the relevant case= 1. We start
from the one-loop result fof=2Jy and for the ratioQ

01611

2 represented by the dotted line. We conclude tha

—roo)/t with t=(T—T.)/T.. Equations(16)—(23) were
evaluated previously9] only for largeL. Here we present
the numerical evaluation of Eq$16)—(23) for arbitrary L
=< 32 without further approximatiofior d=5 including Weg-
ner corrections and lattice terms. Our strategy of adjusﬁi;ng

is based on the fact th& at T=T, depends only ofi, and
1Fhat no overall adjustment forQ is required, since

lim _Q=Qq is universal. Thus we adjusi,=0.93 to the

MC data[8] of Q at T, (Fig. 2), then we use the samg for
x atT.. For a comparison of with the MC data fory, at
T., we introduce the amplituda according toys=AJy/K
=Ayx/(2K.). Using [8] K.=0.1139155 and adjustiné
=0.678 yields the solid line in Fig.(). At T#T. we de-

3-3
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N loocud/@=%) [10]. Since the one-loop results farand yscar
* MC, Ref. [8] differ at O(u3), one must allow for a different ampli-
— lattice theory, Eq. (16) . . ~
---- universal scaling function tude 'AA‘SC&“#A in th_e adjustment  of sca tO. Xs
=Ascaxscal/ (2K.). Using the same strategy of adjustment

Xs 4 ] as described above, we fikd,.,=1.925 and
2 , 1p=2.641, &;=0.396. (24
0 L=4 ‘ . ‘ . The corresponding scaling results are shown in Figs—-13
-1 -0.5 0, 0.5 1 as dashed lines. They disagree with the MC datasifoall L,
tL as noted already by Luijteret al. [8]. As a significant

achievement of our present analysis, we now see, however,
that there is satisfactory agreement between our universal
scaling results and the MC data fbe=12, contrary to the
- disagreement found in Ref8]. The latter disagreement is
terminea,=2.87 from thebulk susceptibilityxs=1.322""  que to the(unjustified identification[8] J=K, ys= x corre-
of series expansion resul7]. sponding toA,.,=1 which, together with the fitting formula

In Figs. Ab)—3 our analytic resultésolid lineg are com-  Eq. (32) of Ref.[8], implied | ,=0.603 andé,=0.549. This
pared with the MC data of Ref8]. We conclude that our formula omits the leading Wegner correctih (4~ 994 and
theory based o satisfactorily describes the existing MC a negative lattice termcL ~%2 [compare our Eq(13)] and
data for 4<L<22, both atT, and away fromT, (Fig. 3, therefore implies aincreasingysL ~>? (Fig. 9 of Ref.[8])
including lattice effects for small. We attribute the remain- towards[15] IimL_mXSL‘S/z= po=1.87, in contrast to the
ing deviations of'Q fqr small L to the inaccuracy of our decreasingy.L ~%2 with p,=1.76 of our one-loop theory
one-loop approximation. Al o results approach the [rig. 1(b)]. We emphasize that this decrease igraversal
lowest-mode results lim _ xsL™>"=po=1.757 and Qo  feature of the scaling functio®(y). The validity of our
=0.4569[horizontal lines in Figs. () and 2 from above  strategy can be tested by calculating the amplituligsand
Thus we predict a nonmonotonicdependence of L %2 By, of the bulk magnetizatioM,= A, (—t)*? at zero exter-
of Q (Fig. 2 and of the scaled magnetizatigt®|)L* at  nal fieldh=0 below T, andM,=Byh*3 at T, for smallh
Te. >0 as functions of, andl, within the ¢* theory atd=5.

The important question that remains to be answered iSubstituting our parameter values, Eg4), we find in one-
whether or not the MC data in Figs(il—3 can be described loop orderA,,=2.26 andBy,=1.89. Very recent MC simu-
by the universal finite-size scaling forms ®fca=2Jxscal Iations[16] for thed=5 Isjng .model confirm these predic-
and Q.. derived previouslyEqs.(76)—(88) of Ref.[9]] on  tions (and exclude tho_se implied by the parameter values of
the basis oH. These scaling forms neglect Wegner correc-Ref' .[8.])’ thus suppo_rtmg the correctness of the strategy of
tions and lattice effects. We have found that the same scalingjur finite-size analysis.
functions can be derived on the basistbfprovided that a We thank K. Binder, H. W. J. Bke, and E. Luijten for

smooth cutoff is used. A crucial issue is to identify the fun-providing us with their MC data in numerical form. Support
damental reference lengtlgg andl, of the two scaling vari- by Sonderforschungsbereich 341 der DFG and by NASA is
ablesx=t(L/&p)? andy=(L/ly)* ¢ wheregouﬁgl’z is the  acknowledged. One of u%.S.C) thanks the NSF of China
amplitude of the bulk correlation length abovie. and  for support under Grant No. 19704005.

FIG. 3. Temperature dependence of susceptibilities fob and
n=1: 10 2y, for L=4 and 10 3y, for L=12.
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